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Supervisor’s Foreword

Quantum topological systems are characterized by a bulk gap and gapless edge
modes, which can carry charge, spin, and energy. The low-energy dynamics of such
systems is dictated by the edge. Consequently, any application of such systems to
quantum transport, to quantum information processing, or to the design of quantum
devices, necessitates a good understating of their edge structure, its robustness
against small perturbations, and its dependence on the system characteristics.

The quantum Hall effect (QHE) is the archetype of topological states. While edge
physics in the QHE regime has been a focal theme over nearly three decades, recent
experimental observations demonstrate that there are fundamental facets of QHE
edge physics that are far from being understood. A few examples are: (i) Combined
measurements of complex and even simpler filling factors are not consistent with the
minimal edge structure that is usually employed for the edge, hence requiring edge
reconstruction to explain the observations. (ii) According to the standard picture of
edge states, elementary excitations along the edge involve fractionally charged
anyons. These anyons possess fractional exchange statistics (intermediate between
bosons and fermions) and may even support non-abelian quasiparticles. However,
notwithstanding long, extensive efforts, to detect anyonic interference remains
evasive. (iii) In contrast to the standard picture of edge states in the QHE regime, it
was found experimentally that neutral modes are much more abundant than theo-
retically expected. Moreover, their quantum nature (e.g., amenability to quantum
interference) is not understood.

The work describes a new method to produce on-demand complex 1D mode
structures. The complex chiral modes, integer or fractional, “helical” or spinful, can
be adeptly controlled, with their inter-mode equilibration tuned by gating or
magnetic field. This also means that they provide a readily available experimental
laboratory to test novel theoretical ideas of a rich menu of edge structures, avoiding
the pitfalls of structural and dynamical unknowns at the edge (which may lead to
ambiguous and confusing insights). This novel synthetic chiral modes can be
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employed as a platform for novel tests of the fundamentals of quantum
mechanics (e.g., the Aharonov–Casher effect, interference between electrons and
anyons), and for engineering of new exotic zero modes for use in topological
quantum computation.

Rehovot, Israel
September 2018

Prof. Moty Heiblum
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Abstract

Electronic systems harboring one-dimensional helical modes, where spin and
momentum are locked, have lately become an important field of its own. When
coupled to a conventional superconductor, such systems are expected to manifest
topological superconductivity, a unique phase hosting exotic Majorana zero modes.
Even more interesting are fractional helical modes, yet to be observed, which open
the route for realizing generalized parafermionic zero modes. Possessing non-
abelian exchange statistics, these quasiparticles may serve as building blocks in
topological quantum computing. Here, we present a new approach to form pro-
tected one-dimensional helical edge modes in the quantum Hall regime. The novel
platform is based on a carefully designed double-quantum-well structure in a
GaAs-based system hosting two electronic sub-bands; each tuned to the quantum
Hall effect regime. By electrostatic gating of different areas of the structure,
counter-propagating integer, as well as fractional, edge modes with opposite spins
are formed. We demonstrate that due to spin protection, these helical modes remain
ballistic for large distances. Beyond the formation of helical modes, the new
platform allows manipulations of quantum Hall edge modes which were not
achievable so far and thus can serve as a rich playground for new research. Some
new possibilities include artificial induction of compounded fractional edge modes
and construction of new edge mode-based interferometers.
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Chapter 1
Introduction and Motivation:
from Helical Modes to Topological
Quantum Computing

1.1 Majorana Zero Modes and Topological
Quantum Computing

1.1.1 Majorana Zero Modes

In recent years, great interest has been sparked in the condensed matter physics
community due to the possibility of engineering exotic quantum states called
Majorana zero modes (MZMs). These quasiparticles have remarkable exchange
statistics, which makes them extremely interesting both from a fundamental physics
point of view as well due to their potential to allow for protected quantum
computations.

To understand what MZMs are and to describe their unique statistics, let’s start
with what we usually work with in condensed matter physics— electrons. Being

fermions, electrons are described with the creation and annihilation operators, cy
and c, respectively, satisfying the anti-commutation relations:

fci; cyj g ¼ dij; fci; cjg ¼ 0: ð1:1Þ

Operating with cy on the ground state creates an electron above the Fermi energy
and operating with c on the ground state removes an electron from below the Fermi
energy (creating a hole).

Since the creation and annihilation operators, cy and c, are complex, we can
write them in terms of their real and imaginary components, called Majoranan
fermions (MFs):

c ¼ 1
2 ðc1 þ ic2Þ cy ¼ 1

2 ðc1 � ic2Þ
c1 ¼ cy þ c c2 ¼ iðcy � cÞ:

ð1:2Þ

© Springer Nature Switzerland AG 2018
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Evidently, MFs are their own anti-particles

c ¼ cy; ð1:3Þ

and it also follows directly from the fermionic anti-commutation relations that the
anti-commutation relations of MFs are:

fci; cjg ¼ 2dij: ð1:4Þ

MFs are named after Ettore Majorana who, in 1937, discovered real solutions to
the Dirac equation, which by definition satisfy conditions (1.3) and (1.4) 1 [2]. But
while these conditions make them exceptionally interesting in high energy and
particle physics, in condensed matter physics this is not enough. In fact, every
system of electrons could be written in terms of MFs, which by itself is merely a
change of basis and does not lead to new physics (e.g. for each electron in a normal

conductor we can write cyc ¼ i
2 c1c2 þ 1

2). MFs do become really interesting in
condensed matter physics, however, when they commute with the Hamiltonian:

½ci;H� ¼ 0: ð1:5Þ

Such a MF is called a MZM and the name (“zero mode”) is adequate as com-
muting with the Hamiltonian implies that occupying the MZM leaves the system in
the ground state:

Hci g:s:j i ¼ H g:s:j i ¼ Eg:s: g:s:j i: ð1:6Þ

Most importantly, this condition also implies that the ground state is degenerate.
We will see later on how MZMs can actually be constructed in real systems, but

first let’s assume we have them and see why they are so interesting.

1.1.2 Topological Quantum Computing with Majorana
Zero Modes

A system of 2N MZMs has a 2N-fold degenerate ground state. This can be seen
from the fact that each two MZMs form a single fermionic operator and the number

operator, cyc ¼ i
2 c1c2 þ 1

2, can take two values, 0 and 1. Thus, there are 2N basis
states, f w1j i; w2j i; . . .; w2Nj ig and a specific ground state can be described as a
linear combination:

1It is still debatable whether there are elementary particles in the universe which indeed satisfy
these conditions (neutrinos are being investigated in this respect) [1].
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wj i ¼
X
i

ai wij i: ð1:7Þ

For example, a system with 4 MZMs has a 4-fold degeneracy with four basis
states, 00j i; 01j i; 10j i; 11j i.

For a closed system, however, fermion parity must be conserved and therefore if
the system is initialized in, say, an even parity state it will be limited to the two
dimensional space spanned by 00j i and 11j i and the general state can be written as:

wj i ¼ a 00j i þ b 11j i: ð1:8Þ

This defines a qubit! Moreover, it can be shown [3, 4] that interchanging MZM
i with MZM j results in a non-abelian unitary transformation in the subspace of
ground states:

wj i ! Uij wj i
U12 00j i ¼ 1ffiffi

2
p ð1þ iÞ 00j i

U23 00j i ¼ 1ffiffi
2

p ð 00j i þ i 11j iÞ
U34 00j i ¼ 1ffiffi

2
p ð1þ iÞ 00j i :

ð1:9Þ

Note that these operations on the qubit only depend the topology of braiding
MZMs, hence the name topological quantum computation. Finally, as we will see
below, MZMs can be realized in systems where there is an energy gap above the
ground state, which means that as long as perturbations are not too strong (weaker
than the gap), the system will stay in the ground state. The only thing that can
change the state of the system is braiding MZMs!

1.2 Forming Majorana Zero Modes in a Spinless p-Wave
Superconductor

As discussed above, MZMs are superpositions of electrons and holes. It is therefore
quite intuitive to look for them in superconductors (SCs), since the basic excitations
in SCs, namely, the Boguliubov quasiparticles are also superpositions of electrons
and holes. In the usual s-wave SC, however, the electron and hole making up a
Boguliubov quasiparticle have opposite spins:

b ¼ ucy" þ vc# ð1:10Þ

1.1 Majorana Zero Modes and Topological Quantum Computing 3



Thus, even when |u|2 and |v|2 are equal–which in fact happens for q asiparticles
that are just above the SC gap2 as well as for sub-gap states that can actually be
made to sit at zero energy [5]—the requirements for MZMs cannot be fulfilled. It
follows that MZMs should be looked for in SCs with other types of pairing which
form Cooper pairs in a triplet spin state leading to an effective spinless SC. While
the first theoretical ideas for such systems where in exotic 2-dimensional systems
with conjectured px � ipy-wave pairing [6, 7], the simplest and most intuitive
system is a 1-dimensional (1D) spinless p-wave SC. This system, which also
proved to be most practical in recent experimental works, was first considered by
Alexei Kitaev in 2001 [8]. To describe such a system and to demonstrate the
emergence of MZMs, Kitaev considered a 1D tight binding model of N identical
electronic sites with p-wave paring and no spin:

H ¼ �l
XN
i¼1

cyi ci �
XN�1

i¼1

tcyi ciþ 1 þDciciþ 1 þ h:c:
� �

ð1:11Þ

Here l is the chemical potential, ci is the annihilation operator of an electron in
site i, t is the hopping strength and D is the superconducting gap. Note that since
there is no spin here, the superconducting term couples electrons on neighboring

sites as a single site cannot be occupied by two electrons ðcyi cyi ¼ 0Þ.
As shown in Fig. 1.1, each electron can be broken into its MFs parts:

ci ¼ 1
2 ðci;1 þ ici;2Þ. Then, for l ¼ 0 and D ¼ t the Hamiltonian reads,

H ¼ �it
XN�1

i¼1

ci;2ciþ 1;1: ð1:12Þ

We can then construct new fermions made of two MFs on neighboring sites
(Fig. 1.1)—ai ¼ 1

2 ðciþ 1;1 þ ici;2Þ. Amazingly enough, writing the Hamiltonian
again in terms of the new fermions, we get a diagonalized Hamiltonian,

H ¼ 2t
XN�1

i¼1

ayi ai: ð1:13Þ

So far this seems merely as mathematical way of diagonalizing the Hamiltonian.
The final eigenstates are the usual fermionic states with a finite excitation energy.
However, looking more closely at the Hamiltonian (1.12), we observe that the two

2Solving the Bogoliubov-deGenes equations one finds uðeÞj j2¼ 1
2 1þ

ffiffiffiffiffiffiffiffiffiffi
e2�D2

p
e

� �
and

vðeÞj j2¼ 1
2 1�

ffiffiffiffiffiffiffiffiffiffi
e2�D2

p
e

� �
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MFs at the ends of the chain, c1;1 and cN;2, are completely absent! Thus, they
evidently commute with the Hamiltonian and we get MZMs.

Note that, as mentioned above, the MZMs are accompanied by an energy gap,
2t, which is important to allows for topologically protected operations. Also, while
we described the scenario for the very unique “sweet spot” where l ¼ 0 and D ¼ t,
it can be shown that the MZMs survive as long as the chemical potential is inside
the gap, lj j\2t [8]. If the chemical potential is not zero, however, the MZMs get
delocalized with an exponential decay into the bulk of the chain. In this case, the
fermionic state made from them, f ¼ 1

2 ðc1;1 þ icN;2Þ, develops a finite energy which
is exponentially small in the length of the chain.

The essential physics of the Kitaev model can be generalized to a continuous
version of a 1D p-wave SC as well as a 2D px � ipy-wave SC. In the 1D case
MZMs can again be obtained at the ends of a long wire [9–11], while in the 2D case
MZMs will appear in vortices of the SC [3, 12].

1.3 Forming a Spinless p-Wave Superconductor
from Helical Modes

It is because of its simplicity and elegancy that the Kitaev chain “rubs the salt on the
womb”—where can we find a system with such exotic p-wave superconducting
pairing? As mentioned above, some exotic systems, such as the fractional quantum
Hall state v = 5/2 [6] and such as Sr2RuO4 [7], have been proposed to exhibit
px � ipy-wave pairing and in fact, several experimental works, strongly support the
existence of MZMs in the former [13–16]. However, the experimental control over
these systems is extremely difficult, making future research possibilities very lim-
ited, let alone practical manipulations of MZMs.

Fig. 1.1 Kitaev’s chain. The blue spheres denote fermionic states while the red spheres denote
MFs. For l ¼ 0 and D ¼ t the Hamiltonian is diagonalized by a set of fermionic states each made
of a pair of MFs from neighboring sites, while two MZMs remain unpaired at the ends

1.2 Forming Majorana Zero Modes in a Spinless p-Wave Superconductor 5



Fortunately, another approach can be taken. In 2008 Fu and Kane realized that it
is possible to create an effective spinless SC by inducing s-wave superconductivity
on the surface of a topological insulator (TI) [17]. While their proposal was for the
2D surface of a 3D TI, it works in a similar way for the 1D edge of a 2D TI and this
1D version is easier to relate to our above discussion of a 1D spinless p-wave SC.
Moreover, the most successful experimental works of recent years were based on
systems that resemble the 1D version of Fu and Kane’s proposal.

The 1D edge of a 2D TI carries a unique edge mode structure: two 1D edge
modes with opposite spins counter-propagate against each other (Fig. 1.2a). Such
modes are called helical modes. The name comes from the fact that the spin is
locked with the direction of motion, making the helicity a well-defined quantum
number. Note that in a system with no coupling between opposite spins the helical
modes will not mix and transport of electrons on the edge modes will be protected
from backscattering. Most importantly, coupling the helical modes to a conven-
tional s-wave SC, thus inducing the usual SC pairing Dck"c�k#, creates an effective
spinless p-wave SC!

An intuitive way to understand the effective p-wave pairing is to note that a spin
singlet cannot be made from the electronic states of the helical modes, because there
is no spin degeneracy (each k-state has a specific spin). At the same time, there are

Fig. 1.2 a Helical modes at the edge of a topological insulator. bWhen a conventional s-wave SC
is coupled to the helical modes, a p-wave SC emerges. If trivial gaps are opened near the ends of
the SC region, for example by coupling ferro-magnets to the helical modes, localized Majorana
zero modes emerge
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states in the system with opposite spins and momentum so that SC pairing can still
take place via the pairing term Dck"c�k#. The helical modes system together with
induced superconductivity from an s-wave SC is described by the Hamiltonian,

H ¼
Z X

r

cyrð�itFr@x � lÞcr þðDc"c# þ h:c:Þ
" #

dx; ð1:14Þ

with r ¼ 0; 1 ¼"; # the spin, tF the Fermi velocity, l the chemical potential and D
the induced SC pairing. In k-space this is

H ¼
X
k

X
r

ðtFkr� lÞcykrckr þðDck"c�k# þ h:c:Þ
" #

: ð1:15Þ

As done in ref. 18 [18], to see how this gives effective p-wave pairing, motivated
by the well-defined helicity in the system we define new operators:

uk ¼
ck" for k[ 0

ck# for k\0

�
helicityþ 1

dk ¼
ck" for k\0

ck# for k[ 0

�
helicity� 1:

ð1:16Þ

The Hamiltonian then becomes:

H ¼
X
k

�ðl� tF kj jÞuyk uk � ðlþ tF kj jÞdyk dk þ
Dsgnk

2
ðuku�k þ dkd�kÞþ h:c:

� 	� �
;

ð1:17Þ

with sgn the sign function. This Hamiltonian describes two independent species
with p-wave pairing! Moreover, the u states fill up all positive energies while the
d states fill up all negative energies. Therefore, l will always be located in the
energy band of one and only one specie leading to an effective spinless p-wave SC.

Finally, an important note should be made on the requirement for MZMs for-
mation. Since the above discussion described the edge modes of a 2D TI, the
MZMs at the ends of the induced superconducting region of the edge will not be
localized and instead will be smeared on the entire non-superconducting region of
the edge. In fact, this will cause the MZMs to couple and hybridize. To avoid this
and localize the MZMs, it is necessary to introduce a coupling between the two
spins in the non-superconducting region of the edge which will open a gap
(a non-topological gap). This could be done for example by coupling the edge
modes to ferromagnets as shown in Fig. 1.2b. As described below (Sect. 1.5), there
are also 1D schemes in which this issue is not present.
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1.4 Parafermions and Fractional Helical Modes

1.4.1 Parafermions, Fibonacci Fermions and Universal
Topological Quantum Computing

While MZMs can define qubits as discussed above, the set of topologically pro-
tected operations that can be performed on such qubits braiding MZMs is limited.
In fact, from the unitary transformation (1.9) it can be seen that for a qubit defined
from four MZMs, braiding operations can only explore the six poles of the Bloch
sphere. However, there is a generalization of MZMs, called parafermionic zero
modes (PFZMs), which can do better.

Parafermions (PFs) are a generalization of MFs and are defined by the operators
aj satisfying

ðajÞd ¼ 1; ajak ¼ e2pisgnðk�jÞ=dajak; d is some integer ð1:18Þ

It is easy to verify that for d = 2 this condition reduces to the condition for MFs.
When two PFs, a and b, are unpaired and absent from the Hamiltonian in a similar
way to the MFs in the Kitaev chain, they commute with the Hamiltonian and form

PFZMs. The operator ayb creates d distinct eigenstates (from (1.18) it can be seen
that there are d different eigenvalues), and therefore a pair of PFZMs give rise to a
d-fold ground state degeneracy.

This generalization allows for much richer and more useful topologically pro-
tected braiding operations on qubits defined from PFZMs [19]. Moreover, while
these PFZMs are still not quite enough for universal quantum computing, they can
be used to engineer yet other entities called Fibonacci anyons [20], the braiding of
which gives a universal set of gates. While we will not describe Fibonacci anyons
here, they are clearly a holy grail for topological quantum computing and they give
a strong motivation for constructing PFZMs.

1.4.2 Forming Parafermionic Zero Modes in Fractional
Helical Modes

The general PFs are much harder to find than MFs. As described above, two MFs
form a usual fermionic operator and hence, MFs are present almost everywhere and
we only need to think of a clever way to unpair them to form MZMs. On the other
hand, the very unusual commutation relations of (1.17) makes searching for PFs
more difficult. Fortunately, there is a system that provides exactly what is needed:
the fractional quantum Hall effect system.

We will discuss both the integer quantum Hall effect (IQHE) and the fractional
quantum Hall effect (FQHE) in greater detail in the next chapter, however, for now
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we only mention that a 2D system in the quantum Hall regime harbors 1D edge
modes. Remarkably, while the edge modes of the IQHE carry electrons, those of the
FQHE carry anyonic excitations which obey very similar relations to (1.17)! In a
similar way to the formation of MZMs, when two counter-propagating edge modes
of the FQHE with opposite spins are coupled to a conventional SC, PFZMs form at
the ends of the induced SC region [21]. As we shall see later, forming these so called
fractional helical modes is a major challenge, which we overcome in this work.

1.5 Previous Experimental Work—Successes
and Challanges

In the past decade, significant experimental efforts were made to demonstrate the
emergence of helical modes in several systems as well as to induce superconductivity
in those systems. We now discuss briefly the main investigated platforms, the main
experimental achievements that weremade, and themain challenges of each platform.

1.5.1 Edge States of Topological Insulator

In 2007, following a theoretical proposal suggesting that HgTe quantum wells can
become TI [22], Konig et al. have demonstrated for the first time the emergence of
helical modes. A couple of years later, Knez et al. showed similar results in InAs/GaSb
quantum wells [23]. In addition, superconductivity was successfully induced in the
HgTe and some evidence for topological superconductivity was observed [24–26].

While these systems are evidently very promising and efforts are being made to
form and probe MZMs in them, important challenges remain. First, the helical
modes where observed only for a relatively small system size on the order of 1–5
microns. In addition, these materials are difficult to work with and new methods
must be developed to allow fabrication of complicated device structures which will
lead to MZMs formation and manipulation. Finally, there is no known rout towards
forming the more general PFZMs in these systems. Although there are some the-
oretical works exploring possible emergence of PFZMs in these systems [27–29],
they all require fine-tuning of parameters, and moreover, arrive at PFZMs that are in
fact not topologically protected.

1.5.2 Semiconducting Nanowires with Strong Spin-Orbit
Interaction

In 2010, two important theoretical works [9, 10] proposed that a semiconducting
nanowire with strong spin-orbit coupling and large Lande g-factor can exhibit
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(approximately) helical modes in the presence of an external magnetic field. Then,
when such a nanowire is coupled to a SC contact, the portion of the NW which is
coupled to the SC is expected to become a topological SC with MZMs at the ends.
Following these proposals, a few experimental groups developed such nanowire-SC
hybrid devices and in 2012 observed the first evidence for MZMs: a zero bias peak
in the differential conductance measured by tunneling spectroscopy to the end of the
device.

Since these discoveries, significant resources and efforts were invested in further
developing the nanowire-SC platform and evidence for MZMs continued to
accumulate. However, there are several important challenges to this platform. First,
there are still competing theoretical explanation for the zero bias peak and a
“smoking gun” for the MZMs emergence is still missing. Second, the emergence of
helical modes in these semiconducting nanowires was never convincingly observed
and in fact, even the 1D nature of the band structure is difficult to confirm in a
reproducible way. Since the electrons in the nanowire are very sensitive to the
disorder on its surface, in many cases the transport behavior points towards a 0D
behavior (a quantum dot, or a series of quantum dots instead of a continuous 1D
band). The sensitivity to disorder also leads to a limitation on the size of the devices
that can be made which in turn might limit the protection of the MZMs. Third,
semiconducting nanowires are difficult to work with in terms of device fabrication,
and scaling up these systems for real quantum computing applications seems
extremely challenging at the current stage. Finally, just as for the TI’s edge states
platform, there is no known way to form protected PFZMs with these 1D systems.

1.5.3 Graphene

Given some of the challenges described above, it is not surprising that other plat-
forms are being investigated for the formation of helical modes and fractional
helical modes. Perhaps the most famous system that exhibits robust ballistic 1D
edge mode transport is the quantum Hall effect system. Moreover, as mentioned
above, the FQHE offers a clear theoretical rout for the creation of PFZMs. Recently
successful engineering of helical edge modes was reported in twisted bilayer gra-
phene in the IQHE regime [30]. This system does not suffer from many of the
problems discussed above and seems to have very promising prospects. In fact, it is
close in nature to the platform developed in our work on double quantum wells of
GaAs heterostructures. While the graphene system has an advantage of easy cou-
pling to a SC, the GaAs system has very robust FQHE states, has mature and well
developed methods of MBE growth and fabrication that allow a variety of device
architectures with a high tunability of parameters (e.g. the coupling between
counter-propagating modes, which can be extremely important for topological
phases to be formed), and is highly reproducible and scalable. Moreover, recent
works successfully coupled such GaAs systems to SC contacts [31].
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1.6 Summary

MZMs in condensed matter systems are extremely interesting both due to their
fascinating physical properties as well as due to their predicted usefulness for
topologically protected quantum computation and quantum information applica-
tions. The most promising way to form MZMs, which has had some important
success in recent years, is via inducing superconductivity by an s-wave SC in a
system with helical modes. While numerous experimental works have had success
in demonstrating helical modes and some evidence for MZMs are accumulating,
each experimental platform has its own challenges, some in the robustness of the
effects, some in reproducibility, and some in scalability that is needed to form
complicated electronic devices for future research and applications. Moreover, no
experimental platform have demonstrated fractional helical modes.

Below, we introduce the new platform we developed for integer and fractional
QHE edge mode manipulations. This platform is based on the well-known GaAs/
AlGaAs heterostructure system, which is extremely clean, robust, easy to work with
and scalable. Using this platform we demonstrated the formation of robust helical
modes and, for the first time to the best of our knowledge, the formation of frac-
tional helical modes. Moreover, the platform can be used for a variety of new
experiments with quantum Hall edge modes as will be discussed.
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Chapter 2
The Quantum Hall Effect

2.1 Two-Dimensional Electron Gas System
in GaAs Heterostructures

In the last four decades, one of the most ubiquitous and fruitful platforms for
condensed matter physics experiments was the 2D electron gas (2DEG) system
embedded in GaAs/AlGaAs heterostructures. Such heterosrtuctures and the use of
modulation doping leads to a system of electrons that are free to move with
incredible high mobility in the x-y plane while they have no motion in the
z-direction.

GaAs and AlAs have an extremely good lattice matching (lattice mismatch
of *0.1%). Therefore, an almost perfect heterostructure of AlxGa1-xAs/GaAs, with
any alloy composition (any x) and any layer thickness can be grown with no
dislocations near the interface. Such heterostructures can be grown by molecular
beam epitaxy (MBE), which allows extremely high precision in layer thickness,
alloy composition, doping concentration and most importantly, extremely clean
crystals with very low impurities concentrations.

Since GaAs and AlxGa1-xAs have different band gaps (for GaAs *1.4 eV and
for Al0.35Ga0.65As *2.0 eV), the band structure can be engineered in various ways.
Two methods to form a 2DEG are typically used as shown in Fig. 2.1. In Fig. 2.1a
a single GaAs/AlGaAs interface is used to create a sharp drop in the bottom of the
conduction band. When silicon donors are added in the AlGaAs layer some distance
from the interface, electrons from the donors migrate to the interface and create a
band banding as shown in Fig. 2.1c. This leads to a “triangular” potential well next
to the interface, which confines the electrons (Fig. 2.1e). In typical samples, the
electron density is tuned such that only the first electronic subband in the well is
occupied, leading to no degree of freedom along the z-direction and therefore an
effective 2D behavior; hence the name 2DEG. Since the GaAs/AlGaAs interface is
very smooth, and since the donors layer is far away from the 2DEG, the mobility
can be incredibly high (above 20 � 106 cm2/V-s in some realizations [1]).
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The second method to form a 2DEG is to sandwich a GaAs layer between two
layers of AlGaAs. In this so called quantum well method1, the bottom of the
conduction band forms a potential well, as shown in Fig. 2.1b. The size of the well
can be chosen in the MBE growth and doping can be introduced in both sides of the
well (Fig. 2.1d). This leads to a greater flexibility in the subbands’ wave functions
as well as in their energy separation. Moreover, due to the double side doping an
even higher mobility, of as high as 36 � 106 cm2/V-s, can be achieve [1].

Fig. 2.1 Forming a 2DEG GaAs/AlGaAs heterostructures. a A single GaAs/AlGaAs interface
creates a sharp drop in the bottom of the conduction band. When silicon donors are added in the
AlGaAs layer some distance from the interface, electrons from the donors migrate to the interface
and create a band banding c, which in turn leads to a “triangular” potential well that confines the
electrons next to the interface e. b A GaAs layer sandwiched between two layers of AlGaAs,
creating a potential well in the conduction band. Double side doping can be used d, which leads to
greater flexibility in the quantum well design and in the charge density in the well. It also allows
for a significantly higher mobility

1The first method of a single interface is simply referred to as GaAs/AlGaAs 2DEG while the
second method of GaAs sandwitched between two AlGaAs regions is referred to as a quantum
well heterostructure.
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The high mobility and the richness of the fabrication methods, which where
developed for these structures, allowed for complicated devices to be constructed
and for a great deal of physics to be investigated. A non-exhaustive list includes:
electron coherence and interference, quantum dots physics, Kondo physics, spin
qubits, quantum Hall effect, fractional quantum Hall effect, neutral modes and
quantization of thermal conductance. Here, we focus on the integer and fractional
quantum Hall effects, which lead to robust 1D edge modes that we will utilized to
create helical modes.

2.2 Classical Hall Effect

In 1879 Edwin Hall discovered the famous Hall Effect [2] and opened the way to
more than a 100 years of new physics. The basic measurement, called a Hall
measurement, is described in Fig. 2.2 When current, Ix, flows in the x-direction
through a rectangular 2DEG (or even just a thin rectangular conductor), called a
Hall bar, which is subject to a perpendicular magnetic field, B, in the z-direction, a
voltage, Vy, develops in the y-direction. In addition to this so called Hall voltage,
and as usual, a voltage Vx develops in the direction of the current. We define the
transverse and longitudinal resistances as follows

Rxy ¼ Vy

Ix

Rxx ¼ Vx

Ix

ð2:1Þ

While the longitudinal resistance is independent of B, the transverse resistance is
linear in B (Fig. 2.2b). The Drude model, which describes the electrons as
non-interacting point like particles that collide with impurities at an average rate of
1=s, describes the physics of the classical Hall Effect well. In this model the
electrons move according to the equation,

Fig. 2.2 Hall measurement
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d~p
dt

¼ �~pðtÞ
s

þ~f ðtÞ; ð2:2Þ

with~pðtÞ the momentum of the electron at time t, and f ðtÞ the force on the electron
at time t. Plugging in the force from the electric field, e~E, and the Lorentz force
from the magnetic field, e~t�~B, and remembering that~I ¼ en~t ¼ en~p=m gives at
steady state d~p

dt ¼ 0:

m
e2ns

B
en� B

en
m

e2ns

� �
Ix
Iy

� �
¼ Ex

Ey

� �
�! Rxy ¼ B

ne
Rxx ¼ 1

enl
ð2:3Þ

With l ¼ es=m the mobility of the electrons in the system, e and m the elec-
tron’s charge and mass, respectively, and n the charge density. Thus, from the
simple classical Hall measurement we can obtain the charge carriers’ density, the
sign of their charge, and the mobility.

2.3 Integer Quantum Hall Effect

In 1980 Klaus von Klitzing discovered a new behavior of the Hall effect that
emerges when a 2DEG is cooled down to sufficiently low temperatures [3]. At
certain ranges of magnetic field, the Hall resistance deviates from the classical
prediction and exhibits plateaus at perfectly quantized values of resistance, which
correspond to integer numbers of the conductance quanta:

Rxy ¼ 1
i
h
e2

i integerð Þ ð2:4Þ

Moreover, the resistance plateaus are accompanied by a vanishing longitudinal
resistance,

Rxx ¼ 0 ð2:5Þ

This effect, which is demonstrated in Fig. 2.3, is called the integer quantum Hall
effect (IQHE). In 1985 Von Klitzing won the Nobel for its discovery.

2.3.1 Landau Levels

The IQHE is a result of the quantization of the energy of electrons in 2D that are
subject to a perpendicular magnetic field. In the absence of magnetic field, the
electrons in the 2DEG fill up a Fermi see with a constant density of states
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(2D dos = m�
p�h2

). However, the addition of a perpendicular magnetic field, B, quan-
tizes the spectrum into a series of discrete and degenerate energy levels, called
Landau levels (LLs), with energies

En ¼ �hxcð12 þ nÞ ð2:6Þ

where xc ¼ eB
m� is the cyclotron frequency.

Each LL further spin-split due to the Zeeman energy, EZ ¼ g � lBB. Figure 2.4,
shows the energy levels as a function of B, a diagram called a fan diagram. For
simplicity of notation, we will refer to the final spin-split energy levels simply as
LLs. Then, as shown in Fig. 2.4, the odd LLs (L1, LL3, etc.) are separated by �hxc,
while each even LL (LL2, LL4, etc.) lies 2g � lBB above the previous odd LL.

Each (spin-split) LL has a degeneracy of g ¼ B
/0

per unit area, with u0 ¼ h
e the

magnetic flux quantum. This means that for every unit area, the number of states in

Fig. 2.3 Integer quantum Hall effect

Fig. 2.4 Fan diagram. The energies of the Landau levels as a function of magnetic field
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each LL equals the number of flux quanta penetrating through the area. The number
of filled LLs is called the filling factor and is denoted by v. For a fixed electron
density n, we therefore get,

m ¼ n
g
¼ nh

eB
ð2:7Þ

The eigenstates of the system can be written (in a particular choice of gauge) as,

wn;kxðx; yÞ ¼
1ffiffiffi
L

p eikxxvn;kxðyÞ ð2:8Þ

with vn;kxðyÞ the wave function of an harmonic oscillator centered at y ¼ ykx ¼ �hkx
eB .

Thus, we see that the electrons are free propagating waves in the x-direction,
while they are localized in the y-direction, with each electron localized around a
position proportional to kx

2. And since the LLs are flat in k-space, they are flat in
position space. However, this picture does not take the confining potential nor the
disorder potential into account. Let’s add them now one by one.

2.3.2 Confining Potential

The energies of the LLs approximately follow the confining potential and bend
upwards towards the edge as shown in Fig. 2.5. Therefore, each filled LL intersects
the Fermi energy at the edge in a single point in space, creating 1D edge mode.
A straight forward calculation shows that each edge mode has a conductance
quantum of e2

h . Moreover, the current carried by this state is chiral, i.e. it flows
around the edge of the sample either clockwise or counter-clockwise depending on
the direction of B. A good intuition for this can be obtained from noticing that the
velocity of the electrons along the edge is proportional to the slope of the energy w.
r. t the wave vector, which in turn is proportional to the slope of the energy w.r.t
position (e.g. in the Landau gauge above de

dk ¼ �h
eB

de
dy). Since the LL always bends

upwards towards the edge, the velocity is always chiral, with the direction
(clockwise or counter-clockwise) given by the direction of B.

We see now that if the filling factor, v, in the bulk is an integer, there are v chiral
edge modes and therefore the conductance along the edge is,

2Note that these eigenstates are a result of a specific choice of gauge for the vector potential. Other
gauge choices would lead to other results such as switching the roles of x and y (this is obvious as
there is complete symmetry between x and y in our discussion so far), but this would not lead to
any difference in our discussion
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r ¼ e2

h
m ð2:9Þ

When current is injected at the source contact of a Hall bar, since the bulk is
gapped and since the current flowing on the edge is chiral, all the current reaches
the ground contact (Fig. 2.6). The potential along the edge is therefore constant all
the way from the source contact to the ground contact (red edge modes in Fig. 2.6),
and is equal to:

Vhotedge ¼ Ixr ¼ Ix
e2

h
m ð2:10Þ

The potential along the edge leaving the ground contact and going to the source
contact (blue edge in Fig. 2.6) is also constant and equal to the ground potential,

Vcoldedge ¼ 0 ð2:11Þ

This gives the correct Hall resistance as well as the vanishing longitudinal
resistance only for integer filling factors! It still does not explain the plateaus. For
this, we must to add disorder.

Fig. 2.5 Landau levels in a confining potential. Since the Landau levels follow the confining
potential, they bend towards the edges, which leads to the formation of 1D chiral edge modes

Fig. 2.6 Current injected to quantum Hall edge modes
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2.3.3 Disorder Potential

In a similar way to the LLs following the edge potential, we can imagine that they
follow the hills and valleys of the disorder potential. As shown in Fig. 2.7. This
leads to a classification of the bulk states to two kind of states:

Localized states: states that become localized around the disorder potential’s
hills and valleys. Due to the localization, the energies of these states are shifted
from the LL energy which leads to broadening of the LLs (Fig. 2.7a, c).

Extended states: states that lie on the zero potential, equipotential lines in the
disorder landscape. The energy of these states is therefore always in the center of
the LL (Fig. 2.7b).

Note that, very importantly, the disorder does not change significantly the
behavior on the edge. For each energy above the center of the LL energy, there will
be an extended state laying on an equipotential line a on the edge. The only thing
that the disorder does is to make this state go in some more complicated “zig-zags”
around the disorder’s hills and valleys.

Fig. 2.7 LLs broadening in a disorder potential & localized and extended states
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This now explains the plateaus. As can be seen in Fig. 2.7, the LLs broadening
helps fixing the Fermi energy in between the centers of two LLs, for a range of
filling factors around integer fillings. Even when the filling factor is not a perfect
integer, the Fermi energy lies between the centers of two LLs, and while it is in the
range of the localized bulk states, the bulk is still insulating (in a mobility gap).
Moreover, since the Fermi energy is above the center of an integer number of LLs,
there is an integer number of edge modes and the conductance on the edge is
quantized.

The result is that for a range of magnetic fields, corresponding to a range of
filling factors around an integer filling, m ¼ ½i� g; iþ g�, where g is determined by
the disorder, the Hall resistance is quantized to

Rxy ¼ 1
i
h
e2

for m ¼ nh
eB

¼ ½i� g; iþ g� ð2:12Þ

and the longitudinal resistance vanishes

Rxx ¼ 0 for m ¼ nh
eB

¼ ½i� g; iþ g� ð2:13Þ

We will refer to the plateau corresponding to the integer filling, i, as “the plateau
of v = i”. Along the whole plateau range, the number of chiral edge modes is i and
the bulk is insulating.

2.3.4 Interactions

Finally, we discuss how electron-electron interactionsmodify and complete the above
picture. As discussed in ref. [4], Coulomb interactions lead to a modification in the
density distribution in an attempt to screen the disorder potential. Figure 2.8
demonstrates this effect. As seen in the figure, in regions where relatively small
density variations can flatten the disorder potential, the highest occupied LL gets
pinned to the Fermi energy and compressible regions are formed. These compressible
regions are separated by incompressible regions where the density variations cannot
screen the disorder potential, which leads to quantum dots formation. This modified
picture of the nature of the localized states can lead to a significant differences from the
simple single particle picture, for instance, to a number of localized states which is
independent of the magnetic field (i.e. the LL degeneracy) [4].

Similarly, at the edges of the sample where the LLs bend upward due to the
confining potential, such flattening also takes place. As described in ref. [5], this
leads to a an alternating compressible and incompressible strips at the edge. In the
compressible strips, the highest occupied LL is pinned to the Fermi energy,
allowing the density to vary smoothly as the occupation of (extended) states is
changed.
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2.4 Fractional Quantum Hall Effect

In 1982 Tsui, Stormer and Gossard [6] discovered a plateau at m ¼ 1=3. With time,
many more plateaus, accompanied by vanishing longitudinal resistance, were dis-
covered at rational filling factors. This so called fractional quantum Hall effect
(FQHE), cannot be explained by a simple non-interacting single particle picture and
is rather a result of strong interactions. The m ¼ 1

3 plateau was theoretically

Fig. 2.8 LLs with disorder and coulomb interactions
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explained by Robert Laughlin in his famous ground state wave-function [7], for
which he received the Nobel prize in 1998, together with Tsui and Stormer.

Several decades after the discovery of the FQHE, many open questions still
remain and the FQHE is still a subject for ongoing research. For instance, the
quasiparticle excitations in the FQHE are predicted to have exotic anyonic
exchange statistics [8], which are yet to be observed. Moreover, as discussed above,
the quasiparticles of the v = 5/2 FQHE state are expected to be MZMs with
non-abelian exchange statistics [9]; a prediction which was strengthen by several
recent experimental works [10–13]. Another important line of research is the
probing and understanding of the particle-hole conjugate FQHE states, such as
v = 2/3, which have neutral edge modes carrying quantized heat conductance and
no charge [14–17]. Finally, as mentioned above and due to the predicted anionic
nature of the FQHE excitations, it is theoretically predicted that when
counter-propagating edge modes of a FQHE state, such as v = 1/3, that have
opposite spins (i.e. fractional helical modes), are coupled to a conventional SC, a
new topological SC would form hosting PFZMs [18].

In the work described below, we demonstrate for the first time the formation of
fractional helical modes. Moreover, our novel platform serves as a new playground
for research in the FQHE regime. For instance, we created an artificial v = 2/3 edge
mode from counter-propagating v = 1 and v = 1/3 edge modes thus demonstrating
some of the predicted universal behavior of such system [14, 15], and thus allowing
access to a new regime that was previously inaccessible. Other possibilities, which
will be discussed below, are designing novel edge mode interferometers with
properties that may assist in probing fractional statistics, as well as engineering
‘topological defects’ that could exhibit anionic or even non-abelian statistics
without superconductivity involved.

2.5 Rxx Versus B and VG Measurement

In the following sections, we utilize samples that have a gate electrode, located on
the surface of the heterostructure, called top gate (TG), as demonstrated in
Fig. 2.9a, b. By varying the voltage on the TG the density in the 2DEG is varied.
A 2D color plot of the longitudinal resistance, Rxx, as a function of magnetic field,
B, and TG voltage, Vg, is shown in Fig. 2.9c. Rxx was measured by a 4-probe
measurement, using a standard lock-in technique at a temperature of *20 mk.
A series of finite Rxx lines, separated by Rxx = 0 lines can be seen. Following the
above discussion, finite Rxx signifies that the Fermi energy is located in the extended
states at the center of a LL, while Rxx = 0 signifies a QHE plateau (the Fermi energy
is located in the localized states between two LL’s centers), which corresponds to
some integer filling factor, as indicated in the figure. The filling factors can be
extracted either from the ratios of the magnetic fields in which Rxx = 0, or from a
corresponding Rxy versus B and Vg-measurement.
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2.5.1 The Slopes of the Rxx Lines

To understand the slopes of the lines in Fig. 2.9c, let’s follow the v = i lines
(i, integer), shown in white dashed lines. When the magnetic field is changed by
DB, the degeneracy of each LL is changed by DB

/0
(per unit area). In order to stay on a

v = i line, the density must increase by Dn ¼ i DB/0
; thus, the slope of the v = i line is

proportional to DVg

DB ¼ eDn
CgDB

¼ i
/0
, with Cg the gate-2DEG capacitance. The slope of

the v = 3 line, for example, is three times larger than the slope of the v = 1 line
(assuming constant gate-2DEG capacitance).

2.5.2 The Width of the Rxx Lines

The widths of the finite Rxx lines is determined by the width of the QHE plteaus.
The wider the plateaus, the narrower the finite Rxx lines. As discussed above this is

Fig. 2.9 Top gated devices and Rxx on the B-Vg plane. a A schematic diagram of the
heterostructure with a top gate on the surface. b A top view SEM image of a Hall bar with a top
gate covering it. The figure also illustrates the measurement scheme for c, where a color plot of Rxx

as a function of magnetic field, B, and gate voltage, Vg, is shown
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related to the number of localized and extended states in the bulk of each LL. To
transition from the v = i−1 plateau to the v = i plateau, all of the extended states of
the ith LL must be filled. Since the vertical axis is proportional to the density, the
vertical width of the finite Rxx line between the v = i−1 plateau and the v = i,
corresponds to the density change which is needed to fill these extended states.

2.5.3 FQHE States in the Rxx Color Plot

What about FQHE states? As can be seen in Fig. 2.9c, the finite Rxx lines of the low
order LLs split, and new Rxx = 0 regions appear due to FQHE states. The black
dashed line in the figure indicates the v = 4/3 FQHE state. As the magnetic field
and the density (gate voltage) increase, the fractional states become more pro-
nounced with wider Rxx = 0 regions. Note that the sample shown in Fig. 2.9 has a
relatively low mobility and hence, not many FQHE states are seen. As will be
shown below, higher mobility samples show a richer pattern of fractional states.

2.6 Edge Mode Devices

Edge modes are not limited to emerge only at the physical edge of the 2DEG. By
shaping various kinds of TGs and gating specifically defined regions of a 2DEG,
edge modes can be formed at the edges of a TG or in the interface between two TGs.
For instance, if two TGs are made in the geometry shown in Fig. 2.10, with the
region under the left TG tuned to v = 3 while the region under the right TG tuned to
v = 1, two edge modes flow on the interface, as illustrated in the figure. However, as
we now discuss, in order to utilize QHE edge modes to form helical modes, a simple
2DEG is not enough. A new degree of freedom must be introduced.

Fig. 2.10 Edge states in the interface between to top gates. The left top gate is set so that the
filling factor underneath is v = 3 while the right top gate is set so that the filling factor underneath
is v = 1. Thus two edge modes form in the interface
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Chapter 3
Two Subbands Quantum Hall System
as a Platform for Edge Mode
Manipulations

It is natural to ask whether it is possible to use the edge modes of the IQHE and
FQHE to create 1D integer helical and factional helical modes. The QHE edge
modes are extremely robust and moreover, as discussed above, they can be
manipulated to form complicated structures using standard lithographic techniques.
However, a difficulty to create counter-propagating edge modes is apparent, since
the QHE edge modes propagate in the same chiral direction. One can try to
overcome this by separating two QHE regions of, say v = 1, with a thin regions of,
say v = 0, as shown in Fig. 3.1 (this can be done, for example, by gating the center
region [1]). However, the two counter-propagating edges that result from this have
the same spin and therefore do not form helical modes. Note also that it would be
impossible to bring the two edges very close to each other due to both fabrication
limitation as well as since the two edge states will then simply hybridize.

To overcome this, we employ a double-quantum-well system that hosts two
electronic sub-bands, as we now describe.

3.1 Double Quantum Well

Figure 3.2 shows a schematic diagram of a double quantum well heterostructure
where two GaAs layers are separated by a thin AlGaAs layer that forms a potential
barrier in the center of the well. The figure corresponds to a heterostructure we
denote as DQWa for which we present results. Here the GaAs well is 40 nm wide
and the AlAs barrier in its center is 3 nm wide. The double well potential, which is
formed due to this structure is shown in the right panel of Fig. 3.2. The figure
shows results of a NextNano3 simulation, which takes into account the MBE
growth parameters as well as the voltage of a top gate. The figure also shows the
simulation results for the total densities in the upper and lower regions of the double
well, as well as the density distribution in the 1st and 2nd electronic subbands of the
well. We denote these subbands by SB1 and SB2. Since there is a finite charge

© Springer Nature Switzerland AG 2018
Y. Cohen, A New Platform for Edge Mode Manipulations in the Quantum Hall
Effect, Springer Theses, https://doi.org/10.1007/978-3-030-05943-9_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05943-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05943-9_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05943-9_3&amp;domain=pdf
https://doi.org/10.1007/978-3-030-05943-9_3


Fig. 3.1 Counter-propagating edge modes in a single 2DEG QHE must be of the same spin

Fig. 3.2 Double quantum well. a A schematic diagram of the DQWa heterostructure. A thin,
3 nm AlAs layer is grown in the center of the 40 nm wide GaAs quantum well to form a double
quantum well potential. b The left panel shows a nextnano3 simulation of the bottom of the
conduction band which forms the double well potential in the GaAs region of the heterostructure.
The energies of the subbands as well as the Fermi energy are indicate by the dashed lines. The
right panel shows the density distribution of each subband illustrating that in this case most of the
density of SB1 is located in the lower side of the well while most of the density of SB2 is located in
the upper side of the well
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density both subbanda, each subband hosts its own 2DEG which in high magnetic
field develops its own LLs. There are therefore two filling factors: v1 for SB1 and v2
for SB2. We define a generalized filling factor by

v ¼ ðv1; v2Þ

3.2 Forming Helical Modes—The Concept

Figure 3.3 illustrates schematically how the addition of the subband degree of
freedom allows the formation of helical edge modes. The sub-bands, are depicted as
two 2-dimensional sheets (blue for SB1 and red for SB2) and each SB has its own
edge modes according to its filling factor. Figures 3.3a, b describe the scenarios of
m = (2, 0) and m = (1, 1), respectively. If these two configurations can be placed one
next to the other in the same sample, as shown in Fig. 3.3c, counter-propagating
chiral edge modes with opposite spins would propagate along the interface. The
opposite spins are due to the fact that the two edge modes in the interface are the
edge modes of LL2 in SB1 (spin down) and the edge mode of LL1 in SB2 (spin up).
Note that the edge mode of LL1 in SB1 circulates around the edge of the whole
sample since this LL is filled in the whole sample.

The pair of filling factors (2, 0) and (1, 1) is not the only one which will result in
helical modes. For instance, the filling factors (4, 0) and (3, 1) will give a similar
result. On the other hand, the interface between (3, 0) and (2, 1) will result in
counter-propagating edge sates with the same spin. In general, (2n, 2m) to (2n + 1,

Fig. 3.3 Schematic illustration of the concept of creating helical edge modes in a double-layer
quantumHall effect system. The two subbands, SB1 and SB2, are shown in blue and red, respectively.
Each subband has its own filling factor, v1 and v2, respectively with the generalized filling denoted by
v= (v1, v2), aScenario of v = (2,0),with two edgemodes propagating at the edge of SB1.bScenario of
v = (1, 1),, with one edgemodes propagating at the edge of SB1 and one at the edge of SB2. c The left
half-plane is in v = (2, 0) and the right half-plane is in v = (1, 1). This creates counter-propagating edge
modes with opposite spins at the interface between the two half-planes (see inset)
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2m + 1) transitions will lead to modes with opposite spins, while (2n − 1, 2m) to
(2n, 2m + 1) transitions will lead to modes with the same spins.

A top-view SEM image of the device we used to implement this idea is shown in
Fig. 3.4. We will denote this device as device A. Two top-gates divide the surface to
two adjacent half-planes. The inset shows a zoom on the interface between the left
and right top gates where the helical edge modes are designed to emerge (scale-bar
2 µm). There are in fact two additional gates, which allow changing the configu-
rations and thus control the propagation length of the counter-propagating modes.
However, it is not trivial that we can change the filling factor from (n, m) to (n + 1,
m − 1) by using TGs voltages alone.

The fan diagram for the two subbands quantum Hall system is shown in Fig. 3.5.
The LLs of SB2 are shifted from the LLs of SB1 by the SBs energy separation,
DESB. Since the slope of lower LLs (e.g. LL1, LL2) is smaller than the slop of
higher LLs (e.g. LL3, LL4), as the magnetic field is increased, the lower LLs of SB2

cross the higher LLs of SB1. At each point on the E-B plane, the filling factor of
SB1 (SB2) can be found by counting the number of blue (red) lines below it. For
example, below point A there are two blue lines and no red lines so that the
generalized filling factor is v = (2, 0). Below point B, on the other hand, there is one
blue lines and one red line, so that v = (1, 1).

Figure 3.5 seems to present a serious problem. The two filling factors, (2, 0) and
(1, 1), do not seem to coexist in the same magnetic field. While electrostatic gating
of different regions of the Hall bar is straight forward, it is not possible to change
the magnetic field locally. Another related problem that comes to mind, is that in the
transition from (2, 0) to (1, 1), the density in SB1 must decrease to change the filling
factor from 2 to 1, while the density in SB2 must increase to change the filling from
0 to 1. How can this be done using only the TG voltage?

Fig. 3.4 Device A. The figure shows a false colors SEM image of the device. Mesa size is
800 µm long and 200 µm wide with a narrower region which is 7 µm wide in the center, where
the left and right top gates interface. The inset shows a zoom on the interface between the left and
right top gates where the helical edge modes are designed to emerge (scale-bar 2 µm). Note, the
two additional upper and lower gates allow changing the filling factors configurations and thus
changing the propagation length of the counter-propagating modes
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Fortunately, there is more to the TG than meets the eye. Since the gate voltage
actually affects the relative energies of the two SBs (and thus affects the fan diagram
itself), it turns out that under certain conditions, the transition between the desired
filling factors can be achieved by tuning only the TG voltage. The reason for this
will be discussed in detail in Sect. 4, but first, let’s see the end result.

3.3 Forming Helical Modes—The Execution

Figure 3.6a shows the Rxx color plot on the B-Vg plane for device A. This mea-
surement and all subsequent measurements were taken using a standard lock-in
technique at a temperature of *20 mK. While the transition (2, 0)-(1, 1) cannot be
driven only by gate voltage, other transitions which give helical modes such as
(4, 0)-(3, 1) can! This can be seen clearly from Fig. 3.6b, which zooms in on the
(4, 0)-(3, 1) transition. At B = 2.275T, if the left and right gate voltages of the
device (Figs. 3.4 and 3.6c) are tuned to point A (yellow) and B (green), respec-
tively, we expect helical modes to emerge in the interface.

To observe this, the following experiment is performed. The left gate voltage,
VLG, is tuned to point A (yellow) of Fig. 3.6b, while the right gate voltage, VLG, is
scanned along the black arrow shown in the figure. Thus, the filling factor of the left
half-plane is (4, 0), while the filling factor of the right half-plane changes from (3,
0) ! (4, 0) ! (3, 1) (Fig. 3.6c). A current of 1nA is injected at S1 and its reflected
part, IS1!D1, is plotted in Fig. 3.6d (upper panel). With the left half-plane at (4, 0),
and the right half-plane tuned to (3, 0) or (4, 0), all the injected edge modes
continue along the upper edge and arrive at D2 while IS1!D1 = 0. When the right
half-plane is tuned to (3, 1), three edge modes arrive at D2 while one edge mode
(LL1 in SB2, red Fig. 3.6c) is then fully reflected to D1, with IS1!D1 = 0.25 nA.

Fig. 3.5 Two subbands fan diagram. The Landau levels of the first subband (blue) and the second
subband (red) are separated by an energy gap ΔESB, which leads to level crossings
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Fig. 3.6 Forming helical modes in a two subbands quantum Hall system
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Similarly, injecting current at S2 and measuring IS2!D2, leads to a complimentary
result (Fig. 3.6d, lower panel). Therefore, in the helical modes configuration, we
observe ballistic transport along the gates’ interface both in the downward and
upward direction (Fig. 3.6d, green shaded region), agreeing with counter-
propagation of helical modes without inter-mode scattering.

As mentioned above, other transitions can be used to form helical edge modes as
well as same-spin counter-propagating edge modes. In Fig. 3.7 IS1!D1 is plotted for
the four possible transitions in Device A. For each transition three traces are shown
corresponding to three different counter-propagation lengths, LCP = 7 µm, 150, and
300 µm. A clear difference is observed between same-spin transitions (odd, 0) !
(even, 1) and opposite-spin transitions (even, 0) ! (odd, 1). In the former case, asLCP
increases beyond 7 µma reduction in IS1!D1 is observed (Fig. 3.7a, c). This reduction
is fully compensated by an increase in IS1!D2, as shown in Fig. 3.8, proving that
inter-mode equilibration takes place (due to tunneling). In contrast, when helical
modes are formed, no reduction in IS1!D1 is observed, even for LCP = 300 µm—
demonstrating spin protection against inter-mode tunneling. Figure 3.9 shows that
there is also in increase in IS1!D2 to fully complete the picture. Finally, Fig. 3.10
shows the extracted transmission of the counter propagating channels as a function of
the propagation length for the four different filling factors configurations.

Fig. 3.7 Spin protection and inter-mode tunneling in counter propagating modes. In the opposite
spins configurations (helical modes), strong protection against inter-mode tunneling is observed,
compared to the same spins configurations
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3.4 Detailed Discussion of the Filling Factors Transition

The possibility to induce the desired filling factor transitions ((n, m) to (n + 1,
m − 1)) by top gate manipulation alone is a result of an interplay between several
effects that we now discuss in detail.

Fig. 3.8 Full details on inter-mode tunneling in the same spin counter-propagating modes
configurations. The reduction in IS1!D1 is shown to be compensated by an increase in IS1!D2,
demonstrating that this reduction is indeed due to inter-mode tunneling
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3.4.1 Localized States and Partial Filling on QHE Plateaus

As mentioned in the discussion of the QHE, the localized bulk states resulting from
the disorder potential are crucial for observing QHE plateaus. The filling factors of
points such as A and B in Fig. 3.6b are evidently not really integer fillings, but
rather fractional fillings in which the system is in a QHE plateau. Point A, for
example, could be in v = (3.76, 0.03) which is on the v = (4, 0) QHE plateau, while
point B in v = (3.25, 0.94) which is on the v = (3, 1) QHE plateau. While this does
not have a significant effect on the edge states picture, and thus on the helical modes
formation, it is central for understanding the LLs crossing regions of Fig. 3.6a, b.

Fig. 3.9 Full details on spin protection in the helical modes configurations
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The localized states can already give a partial answer to an important issue.
Since the gate voltage changes the total density, it changes the total filling factor
vT = v1+v2. It is therefore impossible to transition from v = (4, 0) to v = (3, 1), both
of which have the same total filling factor, by changing the gate voltage alone at a
fixed magnetic field. On the other hand, the transition from v = (3.74, 0.03) to
v = (3.28, 0.89) may be possible since the total filling factors are vT = 3.77 and
vT = 4.17. Our next task now, is to explain how changing the gate voltage increases
the filling factor in one SB and decreases it in the other.

3.4.2 Gate Induced LLs Crossing and Inter-Subband
Charge Transfer

Since the TG is located on the surface of the heterostructure, closer to the upper
quantum well (see Fig. 3.2) it affects the shape of the DQW in an asymmetric way.
As shown in Fig. 3.11a, when the gate voltage increases, it pulls down the upper
side of the well relative to the lower side, making the well more symmetric and
therefore reducing the subbands energy separation, DESB. In turn, all the LLS of
SB2 are shifted downward compared to those of SB1, which can lead to a gate
induced LLs crossings, as shown in Fig. 3.11b.

Due to the LLs crossing, when states of, say, LL1 of SB2 become lower in
energy than states of, say, LL4 of SB1, electrons that filled the former are poured
into the latter (Fig. 3.11b) [2, 3]. This inter-subband charge transfer decreases the
filling factor of SB1, while it increases the filling factor of SB2, exactly as needed!
This explains why in the LLs crossing regions of Fig. 3.6a, b, the finite Rxx lines of

Fig. 3.10 Transmission of the counter propagating channels as a function of propagation length
for various filling factors configurations
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SB1 bend towards lower magnetic fields when the gate voltage is increased. The
higher the gate voltage, the lower the filling factor of SB1, which means that to keep
the same filling the magnetic field must be decreased.

Two important comments must be made regarding this effect. First, as noted
above, increasing the gate voltage evidently also increases the total density. As long
as SB2 has a large enough density of states around the Fermi energy, this extra
density goes almost entirely to SB2 (green region in Fig. 3.11b), as it screens the
gate to SB1. Only when the LL crossing is almost over, and the very low density of
states tale of SB2’s LL is at the Fermi energy, does increasing the gate voltage fills
SB1 again (Fig. 3.11b right image). Second, the amount of inter-subband charge
transfer for a given change in gate voltage, DVg, depends on the density of states
around the Fermi energy, which in turn depends on the LLs broadening. If, for
example, the LLs broadening is very large, the density of states is lower and the
charge transfer is slower and spreads over a wider range of gate voltage. This makes
the ‘bending angle’ of the finite Rxx lines at the crossing more moderate. The
possibility of making the desired filling factor transition by changing the gate
voltage only depends on the interplay between the angle of the Rxx lines and their
width.

Fig. 3.11 Gate induced Landau levels crossing and inter-layer charge transfer
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3.4.3 Following the Gate Induced LLs Crossing

Figure 3.12 shows a simulation of an Rxx color plot around a crossing point. The
simulation assumes a very large amount of localized states (*90% of LLs
degeneracy) as well as very small LLs broadening (*5% of ℏxc). Let’s follow
closely the points on the black arrow in the figure:

• Point A: v = (3.55, 0.00), vT = 3.55. This is just on the edge of the v = (4, 0)
plateau since all of the extended states of LL4 of SB1 are filled while no
localized states are filled.

• Point B: v = (3.67, 0.02), vT = 3.69. LLs crossing started. Note that the density
of states of SB2 near the Fermi energy is still very low and thus SB1 is still being
filled by the gate.

• Point C: v = (3.55, 0.24), vT = 3.79. When the gate voltage is increased to reach
point C, electrons are transferred from SB1 to SB2. In addition, some extra
charge is added to SB2 from the gate. Therefore, while the total filling factor
increased from point B, the filling factor of SB1 decreased. We are now again on
the edge of the (4, 0) plateau since the Fermi energy is in the extended states of
LL4 of SB1.

• Point D: v = (3.45, 0.39), vT = 3.84. All of the extended states of LL4 of SB1

are emptied due to inter-layer charge transfer and we are now entering the
v = (3, 0) QHE plateau.

• Point E: v = (3.42, 0.45), vT = 3.87. This is the edge of the v = (3, 0) plateau
since all of the localized states of LL1 of SB2 are now filled and the next states
to fill are extended states.

• Point F: v = (3.36, 0.55), vT = 3.91. All of the extended states of LL1 of SB2 are
now filled and we enter the plateau of v = (3, 1).

• Point G: v = (3.22, 0.77), vT = 3.99. On the v = (3, 1) plateau. LLs crossing still
continues so that LL1 of SB2 is being filled while LL4 of SB1 is being emptied.

• Point H: v = (3.15, 0.99), vT = 4.14. On the v = (3, 1) plateau. LL1 of SB2 is
now almost full and its density of states near the Fermi energy is very small.
Therefore, from now on the gate voltage increase will fill LL4 of SB1.

Of course, this journey would have been different if we went along the white
arrow in the figure. For instance, point A′ is at the same gate voltage as point A, but
at lower magnetic field. Therefore, the energy difference between the LLs in point A′
is larger than that of point A. In addition, the degeneracy of the LLs is therefore
smaller so instead of starting at A: v = (3.55, 0.00), we start at A′: v = (3.78, 0.00).
Then, as can be seen in the figure, we hit the extended states of LL1 of SB2 before we
hit the extended states of LL4 of SB1 (point C′) and therefore the order of the lines
switch. Finally, the plateau between the lines is now (4, 1) (point D′) and not (3, 0) as
before.
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3.4.4 The Charging Energy Effect

There is yet another important effect that was omitted from the picture described
above, which must be mentioned. Due to the spatial separation between the den-
sities in the two SBs, the inter-subband charge transfer introduces an additional
charging energy, which actually resists the charge transfer [2]. We can view the two
SBs as an effective parallel plate capacitor. When the gate induces LLs crossing and
charge is transferred from, say, LL4 of SB1 to LL1 of SB2, this ‘capacitor’ is
charged. The charging energy pushes LL1 of SB2 up and LL4 of SB1 down and the
result is a smaller net charge transfer for a given change in gate voltage, DVg. Thus,
the smaller the mutual capacitance between the two subbands, the less bending of
the finite Rxx lines. To diminish this effect, the full width of the DQW must be
minimized, while the inter-subband tunneling is controlled by the AlAs barrier.

3.4.5 Combining It All

Figure 3.12 assumes a very small extended to localized states ratio, namely a very
small LLs broadening1 and a very large mutual capacitance between the subbands
(small charging energy). In Fig. 3.13 we illustrate how the picture would look like
with various amounts of broadening, localized states and inter-subband charging
energy.

3.5 Manipulating the Laterar Distance Between
Counter-Propagating Edge Modes

Let’s examine what happens across the interface between two TGs, such as the ones
shown in Fig. 3.14. The 2DEG is typically *100 nm below the TGs and thus the
potential at the 2DEG level changes gradually along *100 nm. If the left and right
gate voltages and the magnetic field are tuned to points A (or A′ or A′′) and B (or B′
or B′′) in the figure, respectively, the LLs cross each other somewhere at the
interface as well as cross the Fermi energy, thus forming two counter-propagating
edge modes (Fig. 3.14c). However, only for the A′-B′ transition, the two LLs cross
the Fermi energy exactly when they cross each other leading to the two
counter-propagating edge modes being in the same position along the x-axis
(Fig. 3.14c, middle image). On the other hand, for the A-B transition, the LL of SB1

1Note that usually, these do not go together as adding disorder typically lowers the extended to
localized states ratio but broadens the levels. The kind of disorder which achieves this would an
many relatively small hills and valleys to the potential landscape so that there are more localized
states but not too much broadening.
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crosses the Fermi energy closer to the left gate and the LL of SB2 crosses the Fermi
energy closer to the right gate, resulting in a lateral distance between the two edge
modes (Fig. 3.14c, left image).

This gives us an important tool to control the coupling between the edge modes
in a given device, as will be demonstrated in Sect. 7.

3.6 Fractional Helical Modes

We turn now to the fractional regime. Figure 3.15a shows a zoom on the Rxx color
plot of DQWa around the (2, 0) ! (1, 1) transition. Points A (yellow) and B (red),
which stand for 4

3 ; 0
� �

and 1; 13
� �

, respectively, allow an intersection of
counter-propagating, v = 1

3 edge modes with opposite spins (Fig. 3.15b). Just as in
the integer case, to confirm the existence of the correct edge mode structure, a
current of 1nA is injected at S1 (S2) and its reflected part, IS1!D1 (IS2!D2), is plotted
in Fig. 3.15c. The left gate voltage, VLG, is tuned to point A (yellow) of Fig. 3.15a,
while the right gate voltage, VLG, is scanned along the black arrow shown in the
figure. Indeed in the appropriate range of VRG, the currents IS1!D1 and IS2!D2 are
both found to be 0.25 nA (Fig. 3.15c, green regions).

Fig. 3.13 Rxx on the Vg-B plane in the LLs crossing region for various amounts of localized
states, LLs broadening and inter-subband charging energy
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Note that while IS2!D2 is not affected by the propagation length, IS1!D1

decreases slightly as the propagation length increases. However, as shown in
Fig. 3.15a there is no corresponding increase in the transmitted current, IS1!D2.
Moreover, as shown in Fig. 3.16b, a non-zero RXX is found in the right half-plane in

Fig. 3.14 Manipulating the lateral distance between counter-propagating edge modes
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the corresponding gate voltage range. Therefore, we attribute the decrease in IS1!D1

to current flow through the bulk (and from there to other grounded contacts) rather
than to tunneling between the edge modes. Note that this is consistent with the fact
that when current is injected from contact S2, the reflected current IS2!D2 is not
affected by the length of propagation (Fig. 3.15c).

To the best of our knowledge, this is a first demonstration of fractional helical
modes.

Fig. 3.15 Fractional helical modes
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3.7 Engineering Hole-Conjugate FQHE Edge Modes

The edge modes in the QHE reveal an even richer physics than integer and frac-
tional charge excitations. In the 1990s, several theoretical works predicted that the
edge structure of the so called particle-hole conjugate states can be composed of
more than one edge mode per quantum state and include downstream (along the
chirality) as well as upstream (against the chirality) modes [4, 5]. The particle-hole

Fig. 3.16 Further measurements on fractional helical modes showing the absence of inter-mode
tunneling in the fractional helical edge modes. a While there is a slight decrease in IS1!D1 as the
propagation length increases, there is no corresponding increase in IS1!D2. Moreover, b shows that
the right half-plane exhibits a non-zero Rxx in the corresponding gate voltage range and therefore,
we attribute the decrease in IS1!D1 to current flow through the bulk rather than to tunneling
between the edge modes
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conjugate states are states such as v = 2/3, 3/5, 4/7, etc., which can be explained by
particle-hole symmetry from the Lauphlin-like states v = 1/3, 2/5, 3/7, etc. The
most famous such state is the v = 2/3 state, which can be constructed from a full LL
(i.e. v = 1) and a v = 1/3 Lauphlin state of holes. In 1991, MacDonald showed that
the edge of this state is expected to support two counter-propagating edge modes—
an upstream mode carrying charge conductance of 1e2/h (electron excitations), and
a downstream mode carrying charge conductance 1/3(e2/h) (e/3 anyonic excita-
tions) [6] (Fig. 3.17a). However, this picture predicts that the two-terminal con-
ductance in the v = 2/3 should be G2T = 4/3(e2/h) (Fig. 3.17b), while all
experimental works that followed McDonald’s work consistently observed
G2T = 2/3(e2/h).

To explain this, Kane, Fisher and Polchiski (KFP) added random tunneling (due
to disorder), accompanied by Coulomb interaction, to the counter-propagating 1
and 1/3 edge mode model. As KFP showed, this leads to a phase transition, which
results in a single downstream charge mode carrying a charge conductance of 2/3
(e2/h), and a so called upstream neutral mode—an edge mode carrying only heat
conductance with no charge [7] (Fig. 3.17c, d). 16 years later, in 2010, such neutral
modes where successfully detected [8] and studying them have become a new
research frontier.

Nevertheless, the KFP transition itself, namely counter-propagating 1 and 1/3
modes which transition to counter-propagating 2/3 and neutral modes as a tunneling

Fig. 3.17 The 2/3 hole-conjugate state and its synthetized form. a The unequilibrated v = 2/3
state; composed of two counter-propagating chiral modes: a downstream v = 1 mode and an
upstream v = 1/3 Laughlin excitation mode. Red and blue represent electron density profile of
independent v = 1 and v = 1/3 modes at the edges respectively. b Equivalent two-terminal
conductance in the unequilibrated regime. c Inter-mode scattering results in edge density profile
reconstruction: coexistence of a downstream v = 2/3 mode and an upstream neutral mode.
d Equivalent two-terminal conductance in the equilibrated regime
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increases, was never demonstrated and probed experimentally. The main difficulty
is that in the v = 2/3 FQHE state, the edge modes are almost always in the tunneling
dominated phase. Moreover, recent theoretical and experimental works showed that
the v = 2/3 edge structure may be more complicated and involve two downstream
1/3 charge modes as well as two upstream neutral modes [9, 10], making it even
more difficult to interpret experimental results. An experimental setup that allows
starting from clean counter-propagating 1 and 1/3 edge modes and controllably
coupling them, so that they transition to the 2/3 and neutral edge modes, is therefore
highly desired. Such an experiment is of interest, not just to confirm the KFP
picture, but even more importantly, since a new theoretical work expanded the KFP
picture and demonstrated that the phase transition can have different fundamental
nature depending on the strength of the inter-mode interactions [11]. The two
subbands quantum Hall system allows an elegant way to construct such an
experimental setup.

3.7.1 Experimental Setup

The device used, denoted by Device C, is shown in Fig. 3.18a. Three horizontal
top-gates separate the 2DEG plane to three regions: upper, center and lower, with
each gate controlling the filling factor in the 2DEG underneath it. As illustrated in
the figure, when the filling factors under the upper (or lower) gate and center gate
are tuned to v = (1, 1) and v = (4/3, 0), respectively, the desired counter-
propagating edge modes are obtained.

Device C contains a series of ohmic contacts, placed on the interface between the
top-gates and separated by varying distances. Each source (S in Fig. 3.18a) contact
was placed in the middle between two grounded Drains (D in Fig. 3.18a), so that
the two-terminal conductance between source and ground can be measured for
several source-drains separation lengths. This allows probing the edge mode
conductance as a function of the propagation length, L. In addition, as explained in
Sect. 5, by varying the magnetic field, the lateral distance, d, between the two
edge modes can be varied, to affect the inter-mode coupling strength. For the
purpose of this experiment, a new DQW heterostructure was grown, denoted by
DQWc. This DQW has a thinner AlAs barrier (of two monoloayers) to allow
for a relatively large range of L and d values inside the phase transition (where 2/3
(e2/h) < G2T < 4/3(e2/h)).

Figure 3.18b shows the Rxx versus B and Vg color plot for DQWc. The figure is
split to two since the two measurements were taken separately. DQWc has a sig-
nificantly higher mobility, which allows for more FQHE states to develop and to
much larger FQHE plateaus (Rxx = 0 regions). In addition, since due to the thinner
barrier in the center of the quantum well, the spatial overlap between the two SBs is
larger, leading to higher tunneling and therefore to a gap opening in the crossing of
LL2 of SB1 and LL1 of SB2 (avoided crossing).
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3.7.2 Differential Conductance Measurements

The upper gate of Device C is tuned to point C (yellow point) in Fig. 3.18b, so that
the filling factor underneath is v = (1, 1). The center gate is then scanned along the
red dashed line in the figure so that it passes from point A (red), where v = (1, 0),
and through point B (blue), where v = (4/3, 0). The two-terminal conductance as a
function of the center gate voltage, is shown in Fig. 3.19a for various propagation
lengths, L. The highlighted region in red corresponds to the center region being at

Fig. 3.18 Device C. Engineering hole-conjugate FQHE edge modes
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filling (1, 0), thus supporting a single downstream integer mode with the conduc-
tance equals e2/h—independent of the propagation length. Once the gate voltage of
the center region is increased, placing its filling at v = (4/3, 0), an evolution of the
two-terminal conductance, from G2T = 4/3(e2/h) at short distance (6 µm) to
G2T = 2/3(e2/h) at long distance (150 µm) is observed (highlighted in blue in
Fig. 3.19a). The full development of the phase transition from the fully decoupled
phase to the fully coupled phase is observed.

Figure 3.19b shows the two-terminal conductance as a function of the center
gate voltage, with a fixed propagation length, L = 15 lm, for various magnetic
fields. The red and blue regions correspond, again, to center region filling factors
(1, 0) and (4/3, 0), respectively. Note that to keep these filling factors constant as the

Fig. 3.19 Length and magnetic field dependent two-terminal conductance. a Two-terminal
conductance versus center top-gate voltage for different propagating lengths at B = 6.45T. The
upper region is set to (1, 1), and the center region in the ranges highlighted by red and blue areas
are tuned to (1, 0) and (4/3, 0), respectively. In blue area, a v = 1 and a v = 1/3 counter-propagating
chiral modes coexist at the interface, and the conductance decreases from 4/3(e2/h) to 2/3(e2/h) as
channel length increases from 6 to 150 lm. In red area, the conductance is e2/h is length
independent due to a single a v = 1 chiral mode at the interface. b Two-terminal conductance
versus propagating length at different magnetic fields, with the center region is tuned to (4/3, 0).
c Two-terminal conductance of a 15 lm long channel as a function of center gate voltage for a
range in field 5.8T < B < 6.6T. The colored areas are as above. d Dependence of the two-terminal
conductance on the magnetic field for propagating length L=38 and 15 lm. With decreasing the
magnetic field the two-terminal conductance evolves from 4/3(e2/h) to 2/3(e2/h)
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magnetic field changes, the gate voltage must also change, as shown by the dashed
yellow lines in Fig. 3.18b. Thus, the colored regions in Fig. 3.19b are tilted
accordingly. Similar to the case in Fig. 3.17a, in the red region only a single integer
mode propagates along the edge and thus the conductance is quantized at e2/h with
no magnetic field dependence. In the blue region, however, strong magnetic field
dependence is observed, which is attributed to the strong effect of the magnetic field
on the inter-mode coupling. In the high field region, the two edge modes are fully
decoupled and the conductance approaches G2T = 4/3(e2/h), while at lower fields,
the edge modes are coupled and the conductance approaches G2T = 2/3(e2/h).

Figures 3.17c shows how the two-terminal conductance in the counter propa-
gating modes configuration develops as a function of propagation length (i.e. the
development along the blue region of Fig. 3.19a), for various magnetic fields. At
high magnetic field, the full transition from G2T = 4/3(e2/h) to G2T = 2/3(e2/h) is
observed, while at lower fields the two modes are coupled even for the shortest
propagation length of L = 6 lm.

Figure 3.19d shows how the two-terminal conductance in the counter propa-
gating modes configuration develops as a function of magnetic field (i.e. the
development along the blue region of Fig. 3.19b), for various two different prop-
agation lengths. For the short propagation length, L = 15 lm, the full transition is
observed, with nice conductance plateaus at G2T = 4/3(e2/h) and G2T = 2/3(e2/h).
For the longer propagation length, L = 38 lm, the conductance does not reach
G2T = 4/3(e2/h), even for the highest magnetic field, B = 6.6T. These results
indicate that magnetic field serves as a powerful tool for controlling the inter-mode
coupling.

3.7.3 Noise Measurements and Neutral Modes

As mentioned above, the tunneling dominated, G2T = 2/3(e2/h), state is expected to
consists of a downstream charge mode accompanied by a diffusive upstream neutral
mode [7, 11]. The experimental setup used to measure such a neutral mode is
sketched in Fig. 3.20a. The current that is injected to the source contact propagates
toward the grounds, while the voltage noise is measured 38 µm away from the
source contact, in A1 and in A2. This voltage noise indicates the presence of a heat
carrying neutral mode. The measurements were performed in the equilibrated
regime; namely, with G2T = 2e2/3 h and thus charge propagating only downstream
(towards A2).

Noise was measured at contact A1 for different magnetic field strengths
(Fig. 3.20b). The noise increased monotonically with the injected DC current and
tended to saturate at higher current values. As the magnetic field increased (away
from Bc), the inter-mode interaction got weaker (Fig. 3.22), and the measured
excess-noise increased (Fig. 3.20b). The observed noise is a manifestation of the
upstream diffusive neutral mode excited by the “hot spot” at the back of the source
contact (Fig. 3.20a). With the magnetic field increasing, the equilibration length,
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needed to fully excite the neutral mode, increases too, thus facilitating a shorter
propagating distance of the heat to reach the amplifier at A1. No sizeable
excess-noise was detected at A2, which is attributed to the much larger distance
between the “hot spot” at G (on the right) and A2 (108 lm). As expected, mea-
surements performed when the interface was hugged by v = (1, 1) and v = (1, 0),
did not find any excess noise, either in A1 or in A2.

3.7.4 Non-equilibrium Measurements

While the above measurements agree well with theory, when adding a bias to the
measurement a striking result is observed. Figure 3.21a shows the differential
conductance measured as a function of voltage bias, VSD, for several different

Fig. 3.20 Noise measurement setup and experimental results. a Schematic diagram of noise
measurement circuit. Current is injected from source S and the upstream and downstream noises
are measured by a spectrum analyzer through amplifier contacts A1 and A2 respectively, followed
by an LC circuit at a center frequency f0 = 1.3 MHz, and amplified by two home-made (cooled)
voltage pre-amplifiers, each followed by a commercial, room temperature, voltage amplifier
(NF-220F5). b Upstream excess noise collected from contacts A1 as a function of Is at different
magnetic fields, whose amplitude initially reduces as decreasing magnetic field, then keep stable at
B < 6T. Green line represents the Is-independent downstream excess noise at B = 6.1T
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values of the propagation length, L, keeping the magnetic field fixed at B = 6.45T.
When at zero bias the edge modes are not in the fully equilibrated phase
(i.e. G2T > 2/3(e2/h)), as the bias is increased, the conductance initially decreased
sharply (up to *150 lV and less), forming a zero-bias conductance peak. At very
short propagation lengths (L = 6 and 15 lm), the conductance does not drop all the
way to G2T = 2/3(e2/h) and instead starts dropping very slowly at higher voltage
bias. For longer propagation lengths (L = 38 and 68 lm), the conductance drops all
the way to 2/3(e2/h) (at a range VDC * 35–60 lV), followed by a soft increase
with incasing DC bias. For the longest distance (L = 150 lm), for which the system
is in the fully equilibrated phase a zero-bias (i.e. G2T = 2/3(e2/h), the conductance
increases smoothly with bias.

Figure 3.21b shows the differential conductance as a function of the DC bias for
several magnetic fields at a propagation length of L = 38 lm. At higher B (weak
inter-mode coupling), a similar zero-bias conductance peak appears. At lower B,
however, the conductance, *2/3(e2/h), was flat around zero bias; but experienced a
rather steep increase with a shoulder-like structure as the bias increased. The critical
bias, where the conductance shoulders appeared, increased gradually with lowering
the magnetic field.

We therefore observe a unique bias behavior. It seems that the inter-mode
tunneling is strongly suppressed at zero bias, as well as at some finite bias voltage
that is highly dependent on the magnetic field. As the spin orientations of the 1 and
1/3 modes in our set up are opposite, such behavior might be related to the energy
required for a spin-flip. Yet, interpretation of the behavior of the non-linear
differential conductance is not trivial and requires more studies.

Fig. 3.21 Differential conductance as a function of bias for a different counter-propagation
lengths, L, and b different magnetic fields leading to different lateral distance, d
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3.8 Future Prospect: Edge Mode Interferometers
in the Two Subbands QHE System

The 1D edge modes of the QHE together with the verity of device architecture
possibilities in GaAs samples provide a great playground for interference experi-
ments. Mach-Zehnder (MZ) and Fabty-Perot (FP) interferometers can be designed
to study electronic interference and entanglement as well as the effects of interac-
tions which are not present in other interference experiments platforms, such as
optical systems. Moreover, in the FQHE regime interference was predicted to
provide signature of anyonic statistics [12–16]. Unfortunately, in the FP geometry
Coulomb interactions dominates the interference pattern and prevents observation
of such signature [17], while in the MZ geometry interference was simply never
observed in the FQHE regime.

There are two important differences between the MZ and FP geometries in the
QHE regime which may hint on possible promising directions. First, due to fab-
rication limitations, the MZ cannot be made as small as the FP. Since the FP shows
interference in the FQHE regime only for small size (*2 � 2 µm or smaller), it is
possible that if the MZ was made smaller, fractional interference could be detected.
Second, while in the MZ geometry there is an ohmic contact inside the interference
area, the FP is free from such a contact. In fact, when an ohmic contact is delib-
erately added inside the FP area, the effect of Coulomb interaction significantly
weakens [18, 19], however at the same time, there is no sign of fractional inter-
ference. One possible issue that the contact can introduce is density variations in its
vicinity. This effect, which can be quite strong can change completely the filling
factor in the MZ area or lead to several different filling factors in it. Therefore, it is
highly desirable to remove the ohmic contact from the MZ in an attempt to detect
fractional interference.

As an outlook for the future and as a last demonstration of some of the possi-
bilities of the two subband QHE platform, we now show how it allows making a
significantly smaller than usual MZ with no ohmic contact inside its interference
area. These days, we are preparing the devices we discuss below and performing
some preliminary measurements needed to pursue this direction.

The geometry of the device, together with the appropriate filling factors under
each gate and with the edge modes demonstration is shown in Fig. 3.22. For
simplicity, we show the case for integer edge modes, but this can be done with
fractional modes as well. Two edge modes of different subbands are brought to
co-propagate close to each other for a certain distance Lt. Along this distance,
tunneling occurs between the edge modes so that this region acts as the beam
splitter of the MZ. The two edge modes are then separated and encircle an
Aharonov-Bohm flux and then brought together to mix again. If current is injected
from, say contact S1 an interference pattern should be observed in both D1 and D2,
as indicated in the figure. Since no ohmic contact is needed inside the interference
area, this area can be made very small.
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Another interesting feature this MZ provide is that by changing the filling factors
configuration the edge modes could be made to counter-propagate (instead of
co-propagate). This then form a FP interferometers and thus, MZ and FP physics
could be compared in the same device.

Fig. 3.22 MZ interferometer with a two SB QHE system
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Chapter 4
Summary

We have developed a two subband quantum Hall system that can be used to
manipulate integer and fractional quantum Hall edge modes in ways which were
unachievable before. Using this system we demonstrated the formation of robust
helical modes and, for the first time to the best of our knowledge, fractional helical
modes. These modes are highly desirable for creating Majorana zero modes and
parafermionic zero modes that are the basic building blocks for topological
quantum computations. While most platforms used by now in an attempt to realize
these quasiparticles suffer from difficulties in robustness, fabrication methods and
scalability, our platform, which is implemented in GaAs/AlGaAs heterostructures,
provide evident advantages in these respects. Moreover for parafermionic zero
modes it is almost essential to use the edge modes of the fractional quantum Hall
effect which are most easily obtained in such heterostructures. Byond helical
modes, we have used the new system to create compounded integer-fractional edge
modes and probed the Kane-Fisher-Polchinski phase transition. We discovered
interesting bias dependence which points to a strong suppression of tunneling at
zero bias as well as an unexpected energy scale in the system, results which we are
interpreting these days. We have demonstrated control over edge mode coupling,
distance and spin and have started working towards a realization of an extremely
small size Mach-Zehnder interferometer with no ohmic contact in its center.
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